
Birdemic
Circular Motion Lab Apparatus User Manual

A Final Project for PHYS 351: Scientific Instrumentation Lab

Produced By

Christopher Egerstrom (Project Manager)

Seth Gnesin

Ali Hassan

Jake Silliman

Alex Toyryla

Max Weinhold

College of William & Mary
Physics Department

1 Our Story

1.1 Design Background

When we set out to build a new centripetal acceleration apparatus, our goals were simplicity
and ease of use. We saw the experimental setup used in the introductory physics labs
and noticed two fatal flaws which we wanted to address. First, people using the original
experimental apparatus had to manually spin the axle to a specific speed such that the mass
swung out at a specific radius. For measurement, they had to indirectly measure the angular
acceleration and indirectly measure the rotation speed. Further, trying to get the radius of
rotation to match the desired radius exactly, with no skew angle outward, while checking
by eye and spinning the axle, is a recipe for poor measurements. We saw the error coming
from the manual spinning and the eyeballed radii and our team mission was to remove the
error by simplifying. Instead of adding complex sensors or devising a complex system for
measuring the centripetal acceleration, we went for simplicity and created the Birdemic.

1.2 Build Process

Our team process began with a basic drawing and an idea. Instead of imprecise manual
spinning, we decided to use a stepper motor so that we could control the rotation speed and
ensure that sufficient torque was output to turn the apparatus regardless of the mass. From
the start, we considered and then quickly discounted using any device that would have been
placed on the articulating arm itself because it would have had a much higher risk of failure
and been costlier to replace. Instead, our initial hand drawing, Figure 1, had an aluminum
stock arm rotating on the stepper with a movable carriage on one side for the variable mass
and radius and a counterweight on the opposite side. As visible in the first drawing, we were
considering using a photodiode coupled with a LED for sensing the period of rotation and
a laser rangefinder for measuring the radius, from which we could calculate the centripetal
acceleration and force.

From a mechanical engineering perspective, the trajectory of the process was straight
forward. We designed and redesigned carriages that would fit on our arm and hold the
masses without providing them much room to shift. A mechanical drawing for the carriages,
which were 3D printed with 0.5mm ABS Plastic filament on an Airwolf EVO, are included
as part of the component list in Appendix B as Figure 5. The base itself is a simple plywood
construction with 5/8” wooden dowel supports separating the 1/4” boards. Our initial
designs, like the one in Figure 1, had a square base where the sensor column was connected,
but to make a more portable apparatus, we slimmed down the base to a rectangle to get rid
of extra wood.

Our team’s electrical engineering process was very component-based. We got the pho-
todiode, laser rangefinder, and stepper motor each working independently of the others and
then worked to integrate them into a cohesive program. Initial tests for the photodiode,
motor, and laser rangefinder are linked. Then, with the shaft assembly also complete, we
ran a first test integrating all three electronic components together, albeit not setting them
up properly, which is here. Coding was done in parallel to the electrical engineering work, so
the set of functions for each component was written independently and then imported into

1

https://drive.google.com/file/d/1g7PmIk4inYUpsm479Fcyp0gI3xvpLLxL/view?usp=sharing
https://drive.google.com/file/d/1hNHe1FCueLbQjyyzWnzj3k6Qo6ES5SMF/view?usp=sharing
https://drive.google.com/file/d/1vmrSJe6L54CNULuWoOT0S-kHZcaCRyV4/view?usp=sharing
https://drive.google.com/file/d/1UAKZ_3cPrvttNK4gjc3bJP80B4RPVsSf/view?usp=sharing

Figure 1: Drawing on a whiteboard of the initial design of the apparatus.

the final program. All the completed code is given in Appendix C with the program in C.1
and the source functions in C.2.

Figure 2: Photograph of the base with the motor and tower mounted but missing the
electronics.

With everything coming together, we began to run testing and mount the motor and
components on the wooden base as shown in Figure 2. The full circuit wiring diagram is
shown in Figure 4. Video of the initial testing is linked here and here. In these tests, we were
primarily looking to stabilize the system and debug the code, as well as determine any points
of troubleshooting for inclusion for Section 5. To stabilize the system, we added gorilla tape
to the flex coupling to make it more rigid. We also added a tape flag to the end of the rod in
order to make the photodiode measurements easier to take. With all that done, we cleaned
up the base to make the apparatus more aesthetically appealing and tightened up the code

2

https://drive.google.com/file/d/1zwo47cRd8dtvG7tSUpgV1rcxAjArMrC2/view?usp=sharing
https://drive.google.com/file/d/1k784r3mkiwJ5KZrelSxJJGwnnXKeb6V9/view?usp=sharing

Figure 3: Photograph of the complete apparatus.

Figure 4: Wiring diagram for the completed electronics.

to result in the final product, pictured in Figure 3.

3

2 Device Specifications

Mechanical Specifications
Parameter Symbol Unit Minimum Typical Maximum Notes

Radius r cm 5.2 - 25.4 Carriage CM
Mass m g 57 - 557 Carriage + Mass

Frequency f Hz 1.5 2 2.5
Period T s 0.4 0.5 2
Speed ω rad/s 3.14 12.57 15.71
Step θ ◦ - 1.8 - Motor Step

Count n - - 17 - Rotations
C-Radius rc cm - 11.64 - Counter-radius
C-Mass mc g 57 - 557 Counterweight

Electrical Specifications
Parameter Symbol Unit Minimum Typical Maximum Notes

Pi Voltage In Vpi V - 5.1 - Wall Adapter
Aux Voltage In Vin V 5 12 18 For Stepper

Relevant Raspberry Pi Characteristics
Quantity Value Notes

IPv4 10.45.137.29
VNC Address 10.45.137.29 For VNC Viewer

MAC dc:a6:32:af:18:c6
Username pi Default

VNC Password abc123 For VNC Viewer
SSH Password pi For SSH Connection

Component Data Sheets
Name Use Link

Raspberry Pi 4 Model B CPU Documentation
Wantai 42BYGHW609 Stepper Motor Datasheet

L298N Dual H-Bridge Motor Driver Datasheet
PDB-C156 Photodiode Homing and Sensing Datasheet

MCP3008 Analog to Digital Converter Photodiode Reading Datasheet
VL53L0X Time of Flight Distance Sensor Radius Measurement Documentation

4

https://www.raspberrypi.org/documentation/
https://www.openimpulse.com/blog/wp-content/uploads/wpsc/downloadables/42BYGHW609-Stepper-Motor-Datasheet1.pdf
https://components101.com/sites/default/files/component_datasheet/L298N-Motor-Driver-Datasheet.pdf
https://datasheet.octopart.com/PDB-C156-Advanced-Photonix-datasheet-140068.pdf
https://cdn-shop.adafruit.com/datasheets/MCP3008.pdf
https://learn.adafruit.com/adafruit-vl53l0x-micro-lidar-distance-sensor-breakout/overview

3 Physics Principles

The centripetal motion apparatus works by measuring the radius and period of a rotating
mass and then calculating out the centripetal acceleration and force. This works because
any object moving along a curve in space can have its change in position defined by a moved
arc length

s = rθ (1)

For an object moving in a uniform circle with a constant radius r, this means that the object
has a velocity v and an acceleration a such that

v = r
dθ

dt
= rω (2)

a = r
dω

dt
= rα (3)

Circular motion, however, is constrained to be periodic so the angular speed ω has relation-
ships to rotation frequency f and period T

ω =
dθ

dt
=
v

r
= 2πf =

2π

T
(4)

By measuring just one of ω, f, and T, the apparatus can return all three of them.
From Newton’s second law for uniform circular motion (meaning that the radius does

not change and the angular speed does not change), there are the following equivalencies

F = mac =
mv2

r
= mrω2 = mr(4π2f 2) = mr

4π2

T 2
(5)

This means that, by measuring some triplets of the following variables (F, m, ac, r, v, T, f, ω),
all others can be calculated. Our apparatus measures the radius r and period T or angular
speed ω. These two parameters, along with the input mass, are sufficient for calculating all
the rest, which the code does after the rotation.

4 User Instructions

4.1 Setting up the Raspberry Pi

There are two possible path for setting up the apparatus which are dependent on the setup of
the lab work station. If there is a monitor, keyboard, and mouse available on the workstation,
the Raspberry Pi can be connected through its micro-HDMI port to the monitor and its USB
ports to the keyboard and mouse. If these accessories are not available, then the Raspberry
Pi can be remotely controlled with the following steps:

1. Ensure your computer is connected to the WM-Welcome Wi-Fi network.

2. Download VNC Viewer to the computer which will control the Pi.

3. Run VNC Viewer

5

https://www.realvnc.com/en/connect/download/viewer/

4. Make sure the Pi and external power supply are plugged in and powered on.

5. Enter the VNC Address from the Relevant Raspberry Pi Characteristics Table
in Section 2.

6. When prompted, enter the username and password from Relevant Raspberry Pi
Characteristics Table in Section 2.

7. The device should now be set up for remote use. See Section 5 for troubleshooting
instructions.

Note: For the more technically adept user, the Raspberry Pi can be controlled from
a shell on the host computer using the command ssh Pi@10.45.137.29 and then inputting
the password from the Relevant Raspberry Pi Characteristics Table in Section 2 when
prompted. If doing so, simply go to Step 4.2.1(2) to continue.

4.2 Measurement Taking

Once the Raspberry Pi is set up and controllable either directly or remotely, the apparatus
is ready to take measurements with the following process.

4.2.1 Initializing

1. Open the Terminal on the Pi (Black icon in the top left row of the interface).

2. Input the command cd Desktop/Pumpkin Centripetal/MainFiles

3. Loosen the set screw on the carriage on the longer side, move it to the desired radius,
then tighten it. Try to keep the carriage as vertical as possible.

4.2.2 Homing and Balancing

1. Ensure the rod is not initially aligned with the homing sensor.

2. Run the open code file by using the command python3 Centripetal.py.

3. The rod will rotate slowly as the motor undergoes its homing sequence. It will stop
when the rod is aligned with the sensor tower. Sometimes it will rotate around several
times before stopping on the sensor.

4. Once the rod is homed, the laser rangefinder will measure and return the radius of the
center of mass of the carriage with the equation:

r = rmax − x+ d (6)

where rmax = cm is the distance from the sensor to the motor shaft, x is the distance
from the sensor to the close face of the carriage, and d = 3.6 cm is the distance from
the carriage face to its center of mass.

6

5. Once the radius is measured, add mass to the movable carriage and input it in the
program.

6. The program will return the required counterweight mass to be put on the other
carriage to create a net vertical torque of zero with the equation:

mc =
m ∗ r
rc

(7)

where mc is the counterweight mass, r is the radius, m is the input mass, and rc = 11.64
cm is the anti-radius from the Mechanical Specifications Table in Section 2. If you
cannot his the counterweight exactly, it is better to go over and round up to the nearest
50g.

4.2.3 Measuring

1. Once the counterweight is on, follow the text prompts on the screen to input the
required quantities to make the measurement.

2. Step back while the arm articulates so as not to be injured.

3. Once the arm stops swinging, the program will return all the relevant statistics from
the rotation, including the rotation speed, period, frequency, centripetal acceleration,
and centripetal force.

4. With that, the program will terminate, but the terminal does not close. Simply run
the command python3 Centripetal.py again to take another measurement after moving
the carriage and going back to Section 4.2.2.

A link to a video tutorial of the entire process detailed above is here.

5 Troubleshooting

The following are a series of potential problems, frequently asked questions and possible
solutions, as well as points of contact for solving the problems.
What do I do if the Raspberry Pi is not visible/won’t show up with VNC Viewer?

• The best thing to do if the Raspberry Pi does not start up is to unplug its power cord
and plug it back in. This will hard-restart the board and should resolve the issue.

• If this does not work or the Pi is still not viewable with VNC Viewer, try connecting a
monitor to diagnose whether the problem is with VNC viewer or with the Pi itself. It
is possible that the Pi is not connected to the internet, in which case contact Dr. Ran
Yang for help.

• If the Pi itself is malfunctioning, see Appendix B.1(1) for replacement details.

• Contact Alex Toyryla or Jake Silliman for more details.

7

https://drive.google.com/file/d/1HFAT-O60uI6g4C2fEVIg27Tct59PbRRc/view?usp=sharing

What do I do if my Pi will not run the program?

• The first step for fixing the Pi should be to hard-restart is by unplugging and replugging
the power cord.

• If this does not work, the Pi might need to be updated with the following terminal
commands sudo apt-get update and sudo apt-get upgrade. The Pi must be connected
to the internet for this.

• Contact Alex Toyryla for more details.

What do I do if I lose the program files?

• Should the program be deleted, source code is available in both Appendix C and on
Github.

• Contact Alex Toyryla for more help.

What do I do if the motor will not run?

• If the motor will not run, it is possible the battery pack is in the off position so switch
it on.

• If the motor will still not run, it is possible the motor driver and/or motor are broken
and could need to be replaced.

What do I do if my motor is vibrating loudly?

• If the motor is vibrating loudly, power is still going to it. Turn off the battery pack if
you are done with the project.

• If not done, the code has likely hit a snag. Run the cleanup with the command python3
cleanup.py and then restart the measurement procedure.

What do I do if the code doesn’t work right?

• For an automatic stop to the code, hit CTRL+C on the keyboard.

• If that does not work, unplug the device and hard-restart it.

What do I do if one of the carriages breaks?

• Models and instructions for 3d printing new carriages are included in Appendix B.2(4)

• Contact Seth Gnesin for more details.

What do I do if I need more masses than I have?

• More masses should be available in the prep room for the PHYS 101/102/107/108
Labs.

• See Appendix B.2(9) for more details.

8

What do I do if I can’t fit enough masses on the carriage?

• The carriages each can hold up to the 500g mass or several of the 100g masses.

• If you cannot fit sufficient masses on the carriage, decrease the maximum mass being
used in the project.

• If you cannot fit sufficient masses on the counterweight, decrease the mass on the other
side and restart the measurement process.

What do I do if I cannot loosen the screw for the carriage?

• If the screw cannot be loosened, it might be at an off angle. Try to screw it in slightly
and then unscrew it again.

What do I do if my carriage is sliding around on the shaft assembly?

• If the carriage is sliding, the screw is likely too lose. Tighten it further and try again.

What do I do if the shaft assembly is too pock-marked to be usable?

• If the shaft assembly becomes pock-marked from the screw, sand paper can be used to
smooth out any sharp edges.

• If the assembly becomes too pockmarked to be fixed, details for creating a new shaft
assembly are available in Appendix B.2(3).

9

Appendices

A Pumpkin Pie Team Members

Name Class Roles Email

Christopher Egerstrom Senior
Project Manager

Mechanical Engineer
csegerstrom@email.wm.edu

Seth Gnesin Junior
CAD Engineer

Acquisition Manager
Writer

sagnesin@email.wm.edu

Ali Hassan Senior
Coder

Electrical Engineer
Mechanical Engineer

aahassan01@email.wm.edu

Jake Silliman Junior
Coder

Electrical Engineer
jssilliman@email.wm.edu

Alex Toyryla Junior
Coder

Electrical Engineer
Media

amtoyryla@email.wm.edu

Max Weinhold Senior
CAD Engineer

Mechanical Engineer
msweinhold@email.wm.edu

B Components

B.1 Electronics

1. Raspberry Pi 4 Model B

• The Raspberry Pi 4 Model B, running Raspberry Pi OS, is the CPU for the
system.

• A replacement can be purchased here for $35. Any standard keyboard, mouse,
and monitor can be connected to the apparatus through the available ports. The
SD card with the source code and operating system can also be transferred to the
replacement board.

• A replacement power supply cord for the Pi can be purchased here for $7.

2. Stepper Motor

• The Wantai 42BYGHW609 Stepper Motor articulates the arm for the system.

• If it stops working, a replacement can be found for $9.41.

3. L298N Dual H-Bridge Motor Driver

• The L298N drives the stepper motor from the external power source.

10

mailto:csegerstrom@email.wm.edu
mailto:sagnesin@email.wm.edu
mailto:aahassan01@email.wm.edu
mailto:jssilliman@email.wm.edu
mailto:amtoyryla@email.wm.edu
mailto:msweinhold@email.wm.edu
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/?resellerType=home
https://www.microcenter.com/product/608169/4-official-15w-power-supply-us---white?src=raspberrypi
https://www.openimpulse.com/blog/products-page/product-category/42byghw609-stepper-motor-1-7-4-kg%E2%8B%85cm/

• Replacement parts can be found here here for $2.30.

4. Photodiode

• The PDB-C156 Photodiode is attached to the breadboard and is used for mea-
suring the period of the stepper, as well as preforming the homing sequence.

• A replacement for the photodiode can be bought from Digikey for $1.66.

5. MCP3008 Analog-to-Digital Converter

• The MCP3008 Analog-to-Digital Converter is attached in the breadboard and is
being used in conjunction with the photodiode for reading the relative light level
to sense the incoming rod.

• A replacement chip can be bought from Digikey for $2.19.

6. Adafruit VL53L0X Time of Flight Distance Sensor

• The VL53L0X laser rangefinder is on the sensor mount on the tower and is used
for finding the radius of rotation.

• A replacement of the full breakout board with the sensor can be bought from
Adafruit for $14.95

B.2 Mechanics

1. Wood Base

• The wood base is made out of 1/4” plywood sheet ($17.99 at ACE Hardware for
2’ x 4’) and 5/8” dowel rod ($3.49 at ACE Hardware for 48”). It is all connected
together with wood glue and screws.

• The screws to mount the stepper to the base are M3 x 0.5 screws which can be
bought from Home Depot or here for $0.62.

• Contact Christopher Egerstrom for build details.

2. Flex Coupling

• A 5mm to 8mm flex coupling is used to attach the shaft assembly to the stepper
shaft.

• A replacement part can be bought from Stepper Online for $1.27.

3. Shaft Assembly

• The shaft assembly is build out of 8mm stock aluminum with the bottom shaft
being 6” long and the crossbar being 1.5’ long. The crossbar has a flattened edge
6” in from one side for the M5 x 0.8 screw between it and the bottom shaft.

• Six feet of 8mm Aluminum 6601 stock can be bought from McMaster for $5.47.

11

https://www.smart-prototyping.com/L298N-Dual-H-bridge-Motor-Driver-Board
https://www.digikey.com/en/products/detail/advanced-photonix/PDB-C156/12675494
https://www.digikey.com/en/products/detail/microchip-technology/MCP3008-I-P/319422
https://www.adafruit.com/product/3317
https://www.homedepot.com/p/Everbilt-M3-0-5-x-10-mm-Plain-Metric-Socket-Cap-Screw-3-Piece-per-Bag-803188/204808024
https://www.omc-stepperonline.com/5mm-8mm-flexible-coupling-18x25mm-cnc-stepper-motor-shaft-coupler-st-fc04.html
https://www.mcmaster.com/aluminum/multipurpose-6061-aluminum-rods-and-discs-7/diameter~8mm/

• A replacement screw for connecting the bottom shaft to the crossbar can be found
at Home Depot or here for$0.50.

• Contact Christopher Egerstrom for build details.

4. Carriages

Figure 5: Mechanical Drawing of the Carriage done in Fusion360. All measurements done
in milimeters.

• The carriages holding the masses were 3D printed with this STL File on an Airwolf
EVO with 0.5mm ABS Plastic Filament. Figure 5 shows a mechanical drawing
of the carriage for future modeling.

• The set screws in the carriages are M4 x 0.7 Socket-Cap Screws which can be
bought from Home Depot or here for $0.98.

• Contact Seth Gnesin or Christopher Egerstrom for design and build details.

5. Sensor Housing

• The housing for the Laser Rangefinder, the Photodiode, and the ADC chip was 3D
printed with this STL File on an Airwolf EVO with 0.5mm ABS Plastic Filament.
Figure 6 shows a mechanical drawing of the sensor for future modeling.

• Contact Max Weinhold for design details.

6. Board Holders

12

https://www.homedepot.com/p/Everbilt-M5-0-8-x-8-mm-Phillips-Flat-Head-Stainless-Steel-Machine-Screw-843858/204841939#product-overview
https://drive.google.com/file/d/10WRVAwzuxndeC_sMprOyinLyKq-hENtW/view?usp=sharing
https://www.homedepot.com/p/Everbilt-M4-0-7-x-14-mm-Plain-Metric-Socket-Head-Cap-Screw-2-Piece-per-Bag-844598/204834752
https://drive.google.com/file/d/16LIRWVLuZof8ctJjhoFq6UAy-iUZDzXK/view?usp=sharing

Figure 6: Mechanical Drawing of the Sensor Housing done in Fusion360. All measurements
done in milimeters.

• The holder for the Raspberry Pi was 3D printed with this STL File on an Airwolf
EVO with 0.5mm ABS Plastic Filament.

• The holder of the L298N H-Bridge was 3D printed with this STL File courtesy
of PrintedHuman on Thingiverse on an Airwolf EVO with 0.5mm ABS Plastic
Filament.

• Contact Seth Gnesin for more details.

7. Breadboard

• The photodiode and ADC are held by two miniature breadboards, one inside and
one outside.

• Any mini breadboard could work but one easy replacement is from Sparkfun for
$3.95.

8. Power Cord

• The 12V power for the Stepper motor is taken from the wall and uses a terminal
converter to connect to the L298N.

• A replacement cord can be bought here for $13.95.

• A replacement adapter can be bought from Sparkfun for $2.95.

13

https://drive.google.com/file/d/1whAfkOsIL7HWfipoBVYGAUiG0lpE_vds/view?usp=sharing
https://drive.google.com/file/d/1rz7ZqOivB8HdQEusjF5EaK0KErOsUD3w/view?usp=sharing
https://www.thingiverse.com/thing:3918295
https://www.sparkfun.com/products/12043
https://www.jameco.com/z/GQ30-120200-BU-Jameco-Reliapro-AC-to-DC-Power-Supply-Wall-Adapter-Transformer-Single-Output-12-Volt-2-Amp-24-Watt_1950497.html
https://www.digikey.com/en/products/detail/sparkfun-electronics/PRT-10287/6163698?utm_adgroup=Between%20Series%20Adapters&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Product_Connectors%2C%20Interconnects_NEW&utm_term=&utm_content=Between%20Series%20Adapters&gclid=CjwKCAiAtK79BRAIEiwA4OskBn0xp_vv5g3IkzJghaPmifzWFwP4uPg9X8fYA5ogcXpBdQWMxNplNRoCqswQAvD_BwE

9. Mass

• This device uses the standard set of masses (20g to 500g) from the Physics De-
partment as used for hanging mass applications.

• For replacement, contact Dr. Ran Yang at rxyan2@wm.edu

10. Hex Wrench

• To loosen the screws for the carriages, a 1.5 Hex Key is used.

• A replacement can be found in the Makerspace or here for $..

C Source Code

All of the code below is also available in this Github Repository.

C.1 Primary Code

#!/ usr / b in /env python
import threading , time , spidev , math
import RPi .GPIO as GPIO
import Functions2 as Functions
import VL53L0X

print (”\n ˜˜˜ Welcome to the Pumpkin Pals ’ Birdemic Cent r i p e t a l Force Sensor
˜˜˜\n\n”)

out1 = 13
out2 = 11
out3 = 15
out4 = 12

GPIO. setmode (GPIO.BOARD)
GPIO. setup (out1 ,GPIO.OUT)
GPIO. setup (out2 ,GPIO.OUT)
GPIO. setup (out3 ,GPIO.OUT)
GPIO. setup (out4 ,GPIO.OUT)

sp i = spidev . SpiDev () #open sp i bus
s p i .open (0 , 0) #open (bus , dev i c e)
s p i . max speed hz=1000000
sp i .mode = 0b00 #sp i modes ; 00 ,01 ,10 ,11

dummy = input (”The arm w i l l r o t a t e automat i ca l l y to the c o r r e c t p o s i t i o n f o r
r a d i a l measurement . Make sure the two rod ends are approximately balanced
, though exact counterwe ights w i l l be c a l c u l a t ed l a t e r . Press ENTER to
cont inue . ”)

try :
Functions . homing ()
print (”\nCarr iage l i n ed up with d i s t anc e s enso r ! Disregard the dev i ce

i n f o d i r e c t l y below . ”)

14

mailto:rxyan2@wm.edu
https://github.com/christopherson00/birdemic

t o f = VL53L0X .VL53L0X()
t o f . s t a r t r ang i n g (VL53L0X .VL53L0X GOODACCURACYMODE)
d i s t anc e = t o f . g e t d i s t an c e ()
print (”\nRadius o f Center o f Mass from Center Rod measured to be ” ,

d i s tance , ” mm. ”)

print (”\nNow measure your de s i r ed mass , and a f t e r en t e r i ng i t the
approximate counterweight mass w i l l be g iven . Make sure the
counterweight i s c l o s e to the value given , though p e r f e c t accuracy i s n
’ t nece s sa ry . ”)

mass = f loat (input (”\nEnter your Mass in Grams : ”))
counterweight = ((mass+57)∗ d i s t anc e) /120 − 57
print (”\nThe recommended counterweight i s ” , round(counterweight , 0) , ”

grams . Add the counterweight now , rounding up to the nea r e s t 50g . ”)

print (”Then , dec ide how many r o t a t i o n s per second to s p e c i f y . The ac tua l
speed w i l l be s lower , so the dev i ce w i l l measure i t f o r you . ”)

reps = 20
speed = f loat (input (”\nEnter Rotat ions per Second : ”))
t imestep = 1/(speed ∗205)

s t epper thread = thread ing . Thread (t a r g e t=Functions . stepper , args=(reps ,
t imestep))

photothread = thread ing . Thread (t a r g e t=Functions . photodiode , args=(speed ,
mass , d i s t anc e))

s t epper thread . s t a r t ()
photothread . s t a r t ()

s t epper thread . j o i n ()
photothread . j o i n ()

except KeyboardInterrupt :
GPIO. cleanup ()

except Exception as e :
print (’ Unexpected Error : ’ , e)
GPIO. cleanup ()

C.2 Imported Functions

C.2.1 Photodiode and Stepper Motor

import RPi .GPIO as GPIO
import time , spidev , math

out1 = 13
out2 = 11
out3 = 15
out4 = 12

GPIO. setmode (GPIO.BOARD)
GPIO. setup (out1 ,GPIO.OUT)

15

GPIO. setup (out2 ,GPIO.OUT)
GPIO. setup (out3 ,GPIO.OUT)
GPIO. setup (out4 ,GPIO.OUT)

sp i = spidev . SpiDev () #open sp i bus
s p i .open (0 , 0) #open (bus , dev i c e)
s p i . max speed hz=1000000
sp i .mode = 0b00 #sp i modes ; 00 ,01 ,10 ,11

def read adc (channel) :
i f not 0 <= channel <= 7 :

raise IndexError (’ I nva l i d . ente r 0 , 1 , . . . , 7 ’)
””” da ta shee t page 19 about s e t t i n g s g l / d i f f b i t to high , hence we add 8 =

0b1000
l e f t s h i f t 4 b i t s to make space f o r the second by t e o f data [1] ”””
r eque s t = [0 x1 , (8+channel) << 4 , 0x0] # [s t a r t b i t , con f i gura t i on , l i s t e n

space]
data = sp i . x f e r 2 (r eques t) #data i s recorded 3 by t e s : data [0] − throw away ,

data [1] − keep l a s t 2 b i t s , data [2] − keep a l l
data10b i t = ((data [1] & 3) << 8) + data [2] #s h f i t b i t s to g e t the 10 b i t

data
return data10b i t

def photodiode (speed , mass , d i s t anc e) :
Setup . t ime s t ep i s time between measurements , d a r k v o l t i s the

f r a c t i o n
of ambient l i g h t reached f o r the program to recogn i z e the ca r r i a g e has
passed over i t , u s u a l l y not much sma l l e r than ambient v o l t a g e wi th our

se tup .
t ime s t ep = 0.001
v o l t s = []
t imes = []
r o t a t i o n s = []
print (”\nReading AMBIENT LIGHT in 0 .5 seconds ”)
time . s l e e p (0 . 5)
ambient = read adc (0) ∗ (3 . 3/1024)
da rk vo l t = 0 .93 ∗ ambient
nummeasure = int (round ((20/ speed) ∗1000∗0 .75 , 0))

The main loop t ha t runs wh i l e t a k ing data on timestamps and v o l t a g e put
out

by the photod iode . Un−comment the p r i n t l i n e be low i f a stream of rea l−
t ime

measurements i s d e s i r ed .
da rk f l a g = False
t = −t ime s t ep
counts = 0
print (”\nTaking measurements ! For accurate measurements , do not h inder

the dev i c e ! ”)
for i in range (nummeasure) :

t = t + t ime s t ep
v vo l t = read adc (0) ∗ (3 . 3/1024)
#pr in t (”The input v o l t a g e i s ” , v v o l t)
i f da rk f l a g == False and v vo l t < dark vo l t :

16

da rk f l a g = True
counts += 1
print (”Count : ” , counts)
r o t a t i o n s . append (time . time ())

i f da rk f l a g == True and v vo l t > dark vo l t :
da rk f l a g = False

v o l t s . append (v vo l t)
t imes . append (t)
time . s l e e p (t ime s t ep)

The loop which c r ea t e s a l i s t o f pe r i od s c a l c u l a t e d wi th timestamps .
Before

appending to the per i od s l i s t , i t removes timestamps u n r e a l i s t i c a l l y
c l o s e to

the prev ious due to any error or ” no i se ” in the s i g n a l .
pe r i od s = []
try :

for i in range (0 , len (r o t a t i o n s)−1) :
while r o t a t i o n s [i +1] − r o t a t i o n s [i] < 0 . 1 :

r o t a t i o n s . pop (i +1)
pe r i od s . append (r o t a t i o n s [i +1] − r o t a t i o n s [i])

except IndexError :
pass

try :
f i n a l p e r i o d = sum(pe r i od s) / len (pe r i od s)
c e n t r i p e t a l = (4∗ (math . p i) ∗∗2 ∗ (mass /1000) ∗ (d i s t anc e /1000)) / ((

f i n a l p e r i o d) ∗∗2)
print (”\nUsing the formula Fc = (4 p i ˆ2 mr) / Tˆ2 , the c e n t r i p e t a l

f o r c e can be c a l c u l a t ed :\n ”)
print (” Cent r i p e t a l Force : ” , c e n t r i p e t a l , ” N”)
print (”Mass : ” , mass , ” g”)
print (”Radius : ” , d i s tance , ” mm”)
print (” Acce l e r a t i on : ” , c e n t r i p e t a l /mass , ” msˆ−2”)
print (”Period : ” , f i n a l p e r i o d , ” s ”)
print (”Frequency : ” , 1/ f i n a l p e r i o d , ” Hz”)
print (”Angular Frequency : ” , 2∗math . p i ∗(1/ f i n a l p e r i o d) , ” rad/ s ”)
print (”Counts whi l e Measuring : ” , counts)

print (”\n\nPowering Down in a few seconds . . . \nThank you f o r us ing the
Birdemic Cent r i p e t a l Force Sensor !\n”)

except :
print (”\nNo r o t a t i o n s were sensed ! Run the program again .\n”)

def s t epper (reps , t imestep) :
out1 = 13
out2 = 11
out3 = 15
out4 = 12

GPIO. setmode (GPIO.BOARD)
outs = [out1 , out2 , out3 , out4]
for out in outs :

GPIO. setup (out , GPIO.OUT)

17

#pat t e rn = [[1 , 0 , 0 , 0] , [1 , 0 , 1 , 0] , [0 , 0 , 1 , 0] , [0 , 1 , 1 , 0] ,
[0 , 1 , 0 , 0] , [0 , 1 , 0 , 1] , [0 , 0 , 0 , 1] , [1 , 0 , 0 , 1]]
pattern = [[1 , 0 , 0 , 0] , [0 , 1 , 0 , 0] , [0 , 0 , 1 , 0] , [0 , 0 , 0 , 1]]

x = int (reps ∗200)
i f x>0 and x<=100000:

for i in range (x) :
throws = pattern [i%len (pattern)]
for j in range (len (outs)) :

GPIO. output (outs [j] , throws [j])
time . s l e e p (t imestep)
#pr in t (i)

GPIO. cleanup ()

def homing () :
i = 0
print (”Reading ambient l i g h t and homing in 3 seconds . . . ”)
time . s l e e p (3)
ambient = read adc (0) ∗ (3 . 3/1024)
da rk vo l t = 0 .94 ∗ ambient
v vo l t = ambient
t imestep = 0.03 #Change t h i s f o r speed ! ! ! 0.003 i s f a s t , 0 .01 i s s low
out1 = 13
out2 = 11
out3 = 15
out4 = 12

GPIO. setmode (GPIO.BOARD)
outs = [out1 , out2 , out3 , out4]
for out in outs :

GPIO. setup (out , GPIO.OUT)

#pat t e rn = [[1 , 0 , 0 , 0] , [1 , 0 , 1 , 0] , [0 , 0 , 1 , 0] , [0 , 1 , 1 , 0] ,
[0 , 1 , 0 , 0] , [0 , 1 , 0 , 1] , [0 , 0 , 0 , 1] , [1 , 0 , 0 , 1]]
pattern = [[1 , 0 , 0 , 0] , [0 , 1 , 0 , 0] , [0 , 0 , 1 , 0] , [0 , 0 , 0 , 1]]

i=0
while v vo l t > dark vo l t :

#pr in t (v v o l t)
throws = pattern [i%len (pattern)]
for j in range (len (outs)) :

GPIO. output (outs [j] , throws [j])
time . s l e e p (t imestep)
#pr in t (i)
i+=1
v vo l t = read adc (0) ∗ (3 . 3/1024)

print (”\nWaiting f o r v i b r a t i o n s to cease . . . ”)
time . s l e e p (3) #f r e e z e the s t eppe r in p l ace f o r 1 s
GPIO. cleanup ()

18

C.2.2 Laser Rangefinder

import numpy as np
import time
from ctypes import ∗
import smbus
import s t a t i s t i c s

VL53L0X GOODACCURACYMODE = 0 # Good Accuracy mode
VL53L0X BETTER ACCURACYMODE = 1 # Bet ter Accuracy mode
VL53L0X BEST ACCURACY MODE = 2 # Best Accuracy mode
VL53L0X LONG RANGE MODE = 3 # Longe Range mode
VL53L0X HIGH SPEED MODE = 4 # High Speed mode

i 2cbus = smbus .SMBus(1)

i2c bus read c a l l b a c k
def i 2 c r e ad (address , reg , data p , l ength) :

r e t v a l = 0 ;
r e s u l t = []

try :
r e s u l t = i2cbus . r e ad i 2 c b l o c k da t a (address , reg , l ength)

except IOError :
r e t v a l = −1;

i f (r e t v a l == 0) :
for index in range (l ength) :

data p [index] = r e s u l t [index]

return r e t v a l

i2c bus wr i t e c a l l b a c k
def i 2 c w r i t e (address , reg , data p , l ength) :

r e t v a l = 0 ;
data = []

for index in range (l ength) :
data . append (data p [index])

try :
i 2cbus . w r i t e i 2 c b l o c k da t a (address , reg , data)

except IOError :
r e t v a l = −1;

return r e t v a l

Load VL53L0X shared l i b
t o f l i b = CDLL(” . . / bin / v l53 l0x python . so ”)

Create read func t i on po in t e r
READFUNC = CFUNCTYPE(c in t , c ubyte , c ubyte , POINTER(c ubyte) , c ubyte)
r ead func = READFUNC(i 2 c r e ad)

Create wr i t e f unc t i on po in t e r

19

WRITEFUNC = CFUNCTYPE(c in t , c ubyte , c ubyte , POINTER(c ubyte) , c ubyte)
wr i t e f unc = WRITEFUNC(i 2 c w r i t e)

pass i2c read and wr i t e f unc t i on po in t e r s to VL53L0X l i b r a r y
t o f l i b . VL53L0X set i2c (read func , wr i t e f unc)

class VL53L0X(object) :
”””VL53L0X ToF. ”””

object number = 0

def i n i t (s e l f , address=0x29 , TCA9548A Num=255 , TCA9548A Addr=0, ∗∗
kwargs) :
””” I n i t i a l i z e the VL53L0X ToF Sensor from ST”””
s e l f . d ev i c e add r e s s = address
s e l f . TCA9548A Device = TCA9548A Num
s e l f . TCA9548A Address = TCA9548A Addr
s e l f . my object number = VL53L0X . object number
VL53L0X . object number += 1
s e l f .ADDR UNIT ID HIGH = 0x16
s e l f .ADDR UNIT ID LOW = 0X17
s e l f . ADDR I2C ID HIGH = 0X18
s e l f .ADDR I2C ID LOW = 0X19
s e l f .ADDR I2C SEC ADDR = 0X8a

def s t a r t r ang i n g (s e l f , mode = VL53L0X GOODACCURACYMODE) :
””” S ta r t VL53L0X ToF Sensor Ranging”””
t o f l i b . s tartRanging (s e l f . my object number , mode , s e l f . d ev i c e addre s s ,

s e l f . TCA9548A Device , s e l f . TCA9548A Address)

def s top rang ing (s e l f) :
”””Stop VL53L0X ToF Sensor Ranging”””
t o f l i b . stopRanging (s e l f . my object number)

def g e t d i s t an c e (s e l f) :
”””Get d i s t ance from VL53L0X ToF Sensor ”””
max d = 330
run time = time . time ()
e lapsed = 0
d i s t an c e s = []

print (’ \nFinding d i s t anc e . . . ’)

for i in range (0 , 4) :
while e lapsed < 3 :

d i s t anc e = t o f l i b . ge tDis tance (s e l f . my object number)
d i s t an c e s . append (d i s t anc e)
e lapsed = time . time () − run t ime

r e s u l t = round(max d − s t a t i s t i c s .mean(d i s t an c e s) ,0)

print (’The d i s t anc e at t h i s po int i s ’ , r e s u l t , ’mm’)
pass
return r e s u l t

This func t i on inc luded to show how to acces s the ST l i b r a r y d i r e c t l y

20

from python in s t ead o f through the s imp l i f i e d i n t e r f a c e
def ge t t im ing (s e l f) :

Dev = POINTER(c vo id p)
Dev = t o f l i b . getDev (s e l f . my object number)
budget = c u i n t (0)
budget p = po in t e r (budget)
Status = t o f l i b . VL53L0X GetMeasurementTimingBudgetMicroSeconds (Dev ,

budget p)
i f (Status == 0) :

return (budget . va lue + 1000)
else :

return 0

C.3 Cleanup Code

import RPi .GPIO as GPIO
out1 = 13
out2 = 11
out3 = 15
out4 = 12

GPIO. setmode (GPIO.BOARD)
GPIO. setup (out1 ,GPIO.OUT)
GPIO. setup (out2 ,GPIO.OUT)
GPIO. setup (out3 ,GPIO.OUT)
GPIO. setup (out4 ,GPIO.OUT)

GPIO. cleanup ()

21

	Our Story
	Design Background
	Build Process

	Device Specifications
	Physics Principles
	User Instructions
	Setting up the Raspberry Pi
	Measurement Taking
	Initializing
	Homing and Balancing
	Measuring

	Troubleshooting
	Pumpkin Pie Team Members
	Components
	Electronics
	Mechanics

	Source Code
	Primary Code
	Imported Functions
	Photodiode and Stepper Motor
	Laser Rangefinder

	Cleanup Code

